An isogenic fibroblast model of premutation-associated cellular phenotypes

Katarzyna A. Kościelska,

Sean Roenspie, Paul J. Hagerman, MD, PhD
UC Davis School of Medicine
July 25, 2012

The need for an isogenic "case-control" human cell culture model

- Molecular mechanisms of premutation-associated cellular dysfunction need to be separated from background gene effects – e.g.,
 - Genetic effects that determine penetrance.
 - Familial clustering of symptoms
 - Childhood involvement
- Cell models can be used to study specific areas of dysfunction e.g.,
 - Mitochondrial dysregulation
 - Inclusion formation
 - Threshold effects
- Such cells set the stage for production of neuronal cell models

Fibroblasts as a cell model

- Skin/cord fibroblasts are easy to obtain, and are readily expandable in culture
- In 1995, Feng et al. cloned a male FXS mosaic to compare translation rates of different CGG repeats
- In 2010, Garcia-Arocena et al. described a fibroblast phenotype in premutation males
- In 2011, Yu et al. cloned RTT female fibroblasts by X-inactivation

The short-term goal of my work: to investigate the use of female single-cell-derived sub-clones

- Generation of fibroblast subclones from female premutation carriers as an isogenic "case-control" model (epi-isoautosomal; differing in the selection of active X chromosome)
- To determine whether allele size is stable during clonal expansion
- To determine whether X-inactivation is stable during single-cell clonal expansion (and iPSC reprogramming)
- If the lines are mitotically and epigenetically stable, one can treat the subclones as epi-isoautosomal case-control pairs (only one *FMR1* allele active in each clonal population)

Our cloning approach

Using X-inactivation to "epi-" genotype the clones

- The FMR1 promoter is extensively methylated during X-inactivation
- The active (unmethylated) allele is cut by a methyl-sensitive enzyme and fails to amplify by CGG-repeat PCR

Using X-inactivation to "epi-" genotype the clones

- The FMR1 promoter is extensively methylated during X-inactivation
- The active (unmethylated) allele is cut by a methyl-sensitive enzyme and fails to amplify by CGG-repeat PCR

X-inactivation remains stable in iPSCs and neurons

CGG repeat size also remains stable

- Evidence for mitotic stability of CGG repeats: cloned fibroblasts retain the same repeat size after 20+ doublings (even clones of clones)
- The issue of Xi stability during iPSC reprogramming has been controversial; our findings show that Xi remains unchanged

Multiple subclones generated so far

Fibroblast Line	Clones
female FXTAS, 35 y	4 NM, 0 EX
female pre, autoimmune, 51 y	5 NM, 5 EX
female pre, 55 y	3 NM, 2 EX
female pre, 54 y	7 NM, 5 EX, also iPSCs and neurons
female pre, 63 y.	4 NM
male mosaic, 20 y	2 ~45, 1 ~60, 29 ~70, 15 ~745 CGGs (and several in-between)
male normal, 14 y	~10 NM

Summary

- Created an isogenic, epi-isoautosomal, case-control model for molecular studies of premutation using female fibroblasts
- Cloned cells maintain same allele size and X-inactivation, throughout long-term culture and iPSC reprogramming/ differentiation

An important additional observation: Lowered O₂ improves cell growth

FXTAS male

premutation female premutation male mosaic

20% O₂

5% O₂

Future goals

- Extensively characterize the subclones from the molecular standpoint
- Use them in live-cell assays (e.g. mitochondrial activity)
- Create isogenic human neurons... more about it next!

Acknowledgements

- Dr. Paul Hagerman
- Sean Roenspie, M.A.
- Dr. Dolores Garcia Arocena
- Christine Iwahashi
- Glenda Espinal
- Erick Loomis
- Dr. Anna Ludwig
- Other members of the Hagerman Lab, past and present

- Dr. Jeanie Liu (Nolta Lab)
- Dr. Flora Tassone
 - Dr. Randi Hagerman
 - Funding: R01HD040661